Inclusiveness In the New Space & Protozone Transportation Services By Joseph N. Pelton, Ph.D Former Dean, International Space University 03 ICAO Space Symposium ICAO Headquarters March 18-20, 2015 #### Diversity of Technical Design Demonstrated in Commercial Space Transportation Concepts to Date | Launch Concept | Organizations | |--|---| | • | (Some of Which Are Now Defunct or Merged) | | Lighter than Air Ascender- Ion
Engine lift from Dark Sky
Station | JP Aerospace, World view and Zero to Infinity | | Vertical Takeoff / Vertical landing (VTVL) | Armadillo Aerospace, Blue Origin, JAXA, Masten Aerospace, Lockheed Martin/EADS | | Vertical Takeoff / Horizontal
Landing (VTHL) at Spaceport | Aera Space Tours, Air Boss, Bristol Space Planes, C & Space,
Energia, Lorrey Aerospace, Phoenix & Pre-X by EADS, Space Dev,
Space Transportation Corp, Space X, Sub Orbital Corp,
Myasishchev Corp. Design Bureau, t/Space, Vela Technologies,
Wickman Space and Propulsion | | Horizontal Takeoff /
Horizontal Landing(HTHL) | Andrews, Scaled Composites, The Spaceship Corporation, Virgin Galactic, XCOR, Project Enterprise by TALIS Institute, DLR, Swiss Propulsion Lab | | Tow Launch and Horizontal
Landing | Kelly Space Technology | | Vertical Launch to LEO from
Space Port | Alliant, Inter Orbital Systems Technology, Rocketplane/Kistler,
Space HAB, UP Aerospace | | Launch to LEO from Jet Plane
or Carrier Vehicle Drop | Triton, Stratolauncher, Launcher One (by Virgin Galactic),
Stratolaunch | # Emerging ProtoZone and New Space Services and their Estimated Market Size-2035 Who Will Provide? Who Will Use? Who Will Regulate? | Supersonic/Hypersonic Flights into the Extreme Stratosphere (Primarily US | \$10-100 Bil/yr | |--|-------------------| | and European intended service providers today but potential global market | | | demand for passengers – NO DESIGNATED REGULATOR) | | | New Low Cost Launch to Orbit (Primarily US, Europe, China, India and | \$10 Bil/yr | | Russia intended providers today) (But this service could allow developing | Upward | | countries and commercial entities to enter the space applications field.) e.g. | | | Launcher One, Stratolauncher, etc. (NO DESIGNATED REGULATOR) | | | Space Tourism/ Space Adventures (Primarily US, Europe, and Russia intended | \$ 2 Bil/yr Plus | | providers today) (But global market demand) (NO DESIGNATED REGULATOR) | | | High Altitude Platform Systems-Commercial UAVs (Global range of | \$ 2Bil/yr | | providers-Many developing economy users) (NO DESIGNATED REGULATOR) | | | Private Space Stations/Habitats – No real space treaty or international | \$1-2 Bil/yr Plus | | regulatory provisions in place. (NO DESIGNATED REGULATOR) | | | Proto-Space Robotic Transport (NO DESIGNATED REGULATOR) | \$1 Bil/yr Plus | | Dark Sky Station/Ion engine lift to orbit (NO DESIGNATED REGULATOR) | Under \$1 Bil/yr | | | | | Issue or
Facility
Involved | Regulatory/Legal
Need | Technical
Research
Need | Int'l
Agencies | Additional
Concerns | Comment | |---|--|--|-------------------|--|--| | Airports
servicing
HTHL
spaceplanes | Certification and periodic recertification | Advanced radar & new positioning & navsat software | ICAO | Coordinatio
n of regular
aviation and
space flights | Safety of surrounding area. Liability insurance | | Spaceports
supporting
HTHL, VTHL,
VTVL systems | Certification and periodic recertification. Range Safety Control | Advanced radar & new positioning & navsat software | ICAO | Space Traffic Managemen t & Control | Safety of surrounding area. Liability insurance | | Launch Sites supporting conventional and commercial rockets | Certification and periodic recertification. Range Safety Control | Advanced radar & new positioning & navsat software | ICAO | Space Traffic
Management
& Control | Safety of
surrounding
area. Liability
insurance | | Rocket Launch
from Balloon or
Parachute | Range Safety Control and High Altitude Range Control | Advanced radar & new positioning & navsat software | ICAO | Space Traffic
Management
& Control | Safety of
surrounding
area. Liability
insurance | | Issue or
Facility
Involved | Regulatory/ Legal
Need | Technical Research
Need | Int'l
Agencies | Additional
Concerns | Comment | |---|---|--|---------------------------------------|--------------------------------------|--| | Rocket
Launch from
carrier
aircraft | Range Safety Control
and High Altitude
Range Control | Advanced radar & possibly LIDAR systems | ICAO | Space Traffic Manage- ment & Control | Safety of
surrounding
area. Liability
insurance | | Rocket
Launch from
ocean | Range Safety Control
and High Altitude
Range Control | Advanced radar & possibly LIDAR systems | ICAO | Space Traffic Manage- ment & Control | Safety of
surrounding
area. Liability
insurance | | Ion Engine
Craft
launched
from Dark
Sky Station | Range Safety Control
and High Altitude
Range Control | Stratospheric
collisions avoidance
systems, Radiation
shielding,. Warning
Beacons, | ICAO | Space Traffic Manage- ment & Control | Liability insurance | | Dark Sky
Station and
Lighter than
Air Craft | New types of certification & recertification plus ATC into Stratosphere. Collision avoidance. | . Warning Beacons,
Advanced radar &
LIDAR | ITU and
perhaps
WMO and
UNEP | Space Traffic Manage- ment & Control | Liability
insurance | | Issue or
Facility
Involved | Regulatory/
Legal
Need | Technical Research
Need | Int'l
Agencies | Addition
al
Concerns | Comment | |--|---|---|--|---|--| | Super Sonic & Hypersonic Transport | Air Traffic
Control into
Stratosphere | Sonic Boom mitigation
standards, Emission
standards, Thermal
Protection Systems | WMO,
UNEP
and ITU | Space Traffic Manage- ment & Control | Liability provisions, flight path coordination, solar CMEs-flares | | Radiation
Exposure
levels/Health
Standards | Radiation Protection Standards, Flight Path Approvals | Ozone hole and Ozone layer investigations | World
Health
Org.,
WMO,
UNDP | Genetic
mutation | Liability
provisions, flight
path coordination,
solar CMEs-flares | | Rocket Pollutant Emissions (N0x, Cox, Water Vapor | Standards for rocket emissions | Stratospheric emission
studies. Improved solid
propellants (better than
aluminum polyimide
and neoprene rubber) | WMO.
UNDP | Climate
Change,
Strato-
spheric
pollution | Incentives for improved propellants. | | Orbital Debris
(Controlled
/uncontrolled
reentry) | Air Traffic
Control and
Space Traffic
Management | Black boxes for all spacecraft. Warning beacons | UN
COPUOS,
IADC,
SDA | Greater
risk of
Kessler
Syndrom
e | Fund for debris
mitigation. Fines
for violations | | Issue or Facility Involved | Regulatory/
Legal
Need | Technical Research
Need | Int'l Agencies | Additional
Concerns | Comment | |---|--|--|--|---|--| | Super Sonic &
Hypersonic
Transport | Air Traffic
Control into
Stratosphere | Sonic Beam
mitigation standards,
Emission standards,
Thermal Protection
Sys. | WMO, UNEP and ITU | Space Traffic Manage-ment & Control | Liability
provisions, flight
path coordination,
solar flares/CMEs | | Radiation Exposure levels/Health Standards | Radiation Protection Standards, Flight Path Approvals | Ozone hole and
Ozone layer
investigations | World Health
Organization,
WMO, UNDP | Genetic mutation | Liability provisions, flight path coordination, solar flares/CMEs | | Rocket Pollutant
Emissions (N0x,
COx, Water Vapor | Standards for rocket emissions | Stratospheric emission studies. Improved propellants | WMO. UNDP | Climate Change,
Stratospheric
pollution | Incentives for improved propellants. | | Orbital Debris (Controlled and uncontrolled reentry) | Air Traffic Control and Space Traffic Management & Control | Black boxes for all spacecraft. Warning beacons | UN COPUOS,
IADC, SDA | Heightened risk
with Kessler
Syndrome | Fund for debris
mitigation. Fines
for violations | | Issue or | Regulatory/ Legal | Technical | Int'l | Addition | Comment | |--------------|---------------------------|--------------|----------|-----------|------------| | Facility | Need | Research | Agencies | al | | | Involved | | Need | | Concerns | | | Electric | Emission Standards | Zero | WMO. | Incentive | Transition | | Vehicles | and Incentives | polluting | UNDP | s for low | planning | | | (Europe is ahead of | aircraft | | emission | | | | US here) | | | aircraft | | | UAVs & | Air Traffic Control | Improved | ITU | Warning | HAPS and | | HAPS and | and Space Traffic | avionics, | | beacons, | UAVs of | | robotic | Management & | Emergency | | collision | prime | | freighters | Control. RF | override | | avoidanc | concern to | | | interference | safety | | e systems | developing | | | | systems | | | economies | | Radio | RF Interference | Improved | ITU | Improvea | Of concern | | Frequency | from Air & Space | Radio | | lloca- | to all | | Interference | Traffic Control & | systems to | | tions | countries. | | & | Mgt | avoid | | process | | | allocations | | interference | | | | #### Conclusions There are a wide range of new systems that need to be considered in terms of air & space traffic management and control – NOT JUST SPACE TOURISM. Frequency allocations, global atmospheric pollution, health standards, are also of concern and ITU, UNEP, WMO, WHO and COPUOS need to be play a role in support of ICAO. Concerns include new low cost commercial orbital launches, private space habitats/platforms, dark sky stations, High Altitude Platform Systems (HAPS), Proto-space or sub-space transport, carrier vehicle or jet drop launches, balloon-based rocket launches, towed launched systems, vertical and horizontal launch and landing systems, commercial sub-orbital flights, and hypersonic transportation systems. ### Conclusions (Continued) ### 03 For developing economies, some of these services such as High Altitude Platform Systems and Lighter than Air Craft are of much greater concern. Protozone (21km to 100 km) is priority area of concern for all countries and needs to be addressed urgently. Developing countries have a stake in all of this and must be given a role in developing a coordinated new International Air and Space Traffic Control system — based on "model" national regulations that are widely accepted. U.S. FAA and Europe's EASA and industry groups such as the Commercial Spaceflight Federation, plus the IADC, and the UN Long-Term Sustainability Working Group, all need to provide leadership here. Also the McGill Global Space Governance study and UNISPACE + 50 could play a constructive role. ## Next Steps ### 03 A systematic review of the entire field as briefly outlined (in this presentation) needs to be undertaken. This process that might be undertaken by the ICAO, FAA, EASA, IADC, UN OOSA, the Secure World Foundation and McGill University. These entities working in concert might assist in identifying in a systematic way where regulatory oversight, standards or new technology development is required or useful and to identify which national or international regulatory agency, governmental entity or private enterprise may be working in these areas. This could help to create a useful and globally accessible data base. This effort might also create a classification system for all of the more than a dozen "new aerospace markets" that are involved. This process needs to take into account not only the safety, health, and economic needs of developed countries but developing countries as well. If there is a UNISPACE + 50 this e a prime topic.